Reg. No. :

Question Paper Code : 82731

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

First Semester

Aeronautical Engineering

MA 1101 - MATHEMATICS - I

(Common to ALL Branches)

(Regulations 2004)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. If the sum of two eigen values and the trace of a 3×3 matrix A are equal, find the value of det(A).
- 2. State Cayley-Hamilton theorem.
- 3. Find the direction cosines of any straight line segment perpendicular to xy-plane and also to yz-plane.
- 4. Find the angle between the planes 2x y + z + 8 = 0 and x + y + 2z 12 = 0.
- 5. What is the radius of curvature of the circle $3x^2 + 3y^2 + 6x + 6y 4 = 0$?
- 6. Show that the envelope of the family of lines $y = mx + \frac{a}{m}$, *m* being the parameter is a parabola.

7. If
$$u = x^2$$
, $v = y^2$, find $\frac{\partial(u, v)}{\partial(x, y)}$.

8. If
$$z = yf(x^2 - y^2)$$
, show that $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = \frac{xz}{y}$.

- 9. Convert the equation $x \frac{d^2 y}{dx^2} 3 \frac{dy}{dx} + \frac{y}{x} = x^2$ into a linear differential equation with constant coefficients.
- 10. Find the particular integral of the differential equation $y'' 3y' + 2y = 2^x$.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Verify Cayley Hamilton theorem for the matrix $A = \begin{pmatrix} 5 & 3 \\ 1 & 3 \end{pmatrix}$. Express A^{-1} , if exists in terms of A and I.
 - (ii) Find the eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$
 - Or
 - (b) (i) Find the value of k for which the equations x + y + z = 1, x + 2y + 3z = k, $x + 5y + 9z = k^2$ have a solution. (8)
 - (ii) Let A be a symmetric matrix of order 3 with eigen values -1, 1, 4and corresponding eigenvectors $\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$ respectively. Find the matrix A. (8)
- 12. (a) (i) Find the equations of the spheres passing through the circle $x^2 + y^2 + z^2 6x 2z + 5 = 0$, y = 0 and touching the plane 3y + 4z + 5 = 0. (8)
 - (ii) Find the reflection (image) of the point (1, 3, 4) in the plane 2x y + z + 3 = 0. (8)

Or

- (b) (i) Show that the lines $\frac{x+4}{3} = \frac{y+6}{5} = \frac{z-1}{-2}$ and 3x-2y+z+5=0=2x+3y+4z-4 are coplanar. Find their point of intersection and the plane in which they lie. (8)
 - (ii) Find the angle between the lines whose direction cosines are given by 3l + m + 5n = 0 and 6mn - 2nl + 5lm = 0. (8)
- 13. (a) (i) Show that the radius of curvature of the curve $r^n = a^n \cosh \theta$ is $\frac{a^n r^{-n+1}}{n+1}.$ (8)

(ii) Find the envelope of the family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$ where *a* and *b* are connected by the relation a + b = c. (8)

 $\mathbf{2}$

82731

(b) (i) Find the equation of the circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a} \operatorname{at}\left(\frac{a}{4}, \frac{a}{4}\right).$ (8)

(ii) Find the evolute of the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
. (8)

14. (a) (i) Find the local minima and maxima of the function of two variables
$$f(x, y) = x^4 + y^4 - 2x^2 - 2y^2 + 2xy$$
. (8)

(ii) Differentiating
$$\int_{0}^{x} \frac{dx}{x^{2} + a^{2}} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right)$$
, evaluate $\int_{0}^{x} \frac{dx}{\left(x^{2} + a^{2}\right)^{2}}$ and $\int_{0}^{\infty} \frac{dx}{\left(x^{2} + a^{2}\right)^{2}}$. (8)

Or

(b) (i) Find the Taylor's series expansion of $e^x \sin y$ near the point $\left(-1, \frac{\pi}{4}\right)$ upto the third degree terms. (8)

(ii) If
$$u = u(y-z, z-x, x-y)$$
, find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$. (8)

15. (a) (i) Solve
$$(D^2 - 4D + 13)y = e^{2x} \cos 3x$$
. (8)

(ii) Solve
$$(2x+3)^2 \frac{d^2 y}{dx^2} - 2(2x+3)\frac{dy}{dx} - 12y = 6x$$
. (8)

\mathbf{Or}

(b) (i) Solve
$$\frac{dx}{dt} + y = \sin t$$
, $x + \frac{dy}{dt} = \cos t$, given that $x = 2$ and $y = 0$ at $t = 0$. (8)

(ii) Solve, by the method of variation of parameters,
$$\frac{d^2y}{dx^2} + 4y = \sec 2x$$
.
(8)

82731